Continuum model of the two-component Becker-Döring equations

نویسنده

  • Ali Reza Soheili
چکیده

The process of collision between particles is a subject of interest in many fields of physics, astronomy, polymer physics, atmospheric physics, and colloid chemistry. If two types of particles are allowed to participate in the cluster coalescence, then the time evolution of the cluster distribution has been described by an infinite system of ordinary differential equations. In this paper, we describe the model with a second-order two-dimensional partial differential equation, as a continuum model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the predictions and limitations of the Becker-Döring model for reaction kinetics in micellar surfactant solutions.

We investigate the breakdown of a system of micellar aggregates in a surfactant solution following an order-one dilution. We derive a mathematical model based on the Becker-Döring system of equations, using realistic expressions for the reaction constants fit to results from Molecular Dynamics simulations. We exploit the largeness of typical aggregation numbers to derive a continuum model, subs...

متن کامل

The Beker-Döring System and Its Lifshitz-Slyozov Limit

We investigate the connection between two classical models for the study of phase transition phenomena, the Becker–Döring equations, and the Lifshitz–Slyozov system. More precisely, we introduce a scaling parameter and show that the solution to the Becker–Döring equations converges to that of the Lifshitz–Slyozov system as the scaling parameter goes to 0.

متن کامل

Long Time Behavior of a Modified Becker-Döring System

Abstract A modification, based on asymptotic behavior, of the Becker-Döring system is introduced in which the concentration of monomers is slaved to the concentrations of the other clusters. This modified system has the same continuum limit as usual Becker-Döring system. For one member of these it is proved, for compact initial data, that all solutions will converge to a unique self-similar sol...

متن کامل

Cluster renormalization in the Becker-Döring equations

We apply ideas from renormalization theory to models of cluster formation in nucleation and growth processes. We study a simple case of the Becker-Döring system of equations and show how a novel coarsegraining procedure applied to the cluster aggregation space affects the coagulation and fragmentation rate coefficients. A dynamical renormalization structure is found to underlie the Becker-Dörin...

متن کامل

An Asymptotic Theory for the Re-Equilibration of a Micellar Surfactant Solution

Micellar surfactant solutions are characterized by a distribution of aggregates made up predominantly of premicellar aggregates (monomers, dimers, trimers, etc.) and a region of proper micelles close to the peak aggregation number, connected by an intermediate region containing a very low concentration of aggregates. Such a distribution gives rise to a distinct two-timescale reequilibration fol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Math. Mathematical Sciences

دوره 2004  شماره 

صفحات  -

تاریخ انتشار 2004